Dissociative (D)

- Generally observed for 18 electron complexes with strong field ligands
- $e.g.$ Cr(CO)₆, MnBr(CO)₅, Ni(CO)₄

 k_1 (slow) k_2 (fast) $(CO)_5$ Cr-CO \leftarrow $\left(\text{CO}\right)_5$ Cr $\left(\text{CO}\right)_5$ Cr $\left(\text{CO}\right)_5$ Cr-L $18e^{t}$ k_{-1} $16e^{t}$ $18e⁻$ ΔS^{\ddagger} = +10 to +15 e.u. If k_{-1} is not important: Rate = $k_1[(CO)_5Cr$ -CO] = does not depend on [L] If k_{-1} is important: Rate = $k_1k_2[(CO)_5Cr\text{-}CO][L]$ k ₁ $[CO]$ + k ₂ $[L]$

- If ΔS^{\ddagger} is significantly positive, the mechanism is almost certainly dissociative.
- If the rate does not depend on [L], the mechanism is almost certainly dissociative.
- The *cis*-effect can be used to work out which isomer will be formed in dissociative substitution reactions of octahedral compounds [*e.g.* MnBr(CO)₅].

Associative (A)

- Generally observed for 16 and 17 electron complexes
- *e.g.* square planar complexes as well as other geometries

- If ΔS^{\ddagger} is significantly negative, the mechanism is almost certainly associative.
- If the mechanism is associative, the rate of reaction will depend on [L]. However, a dependence of the reaction rate on [L] does not necessarily indicate an associative mechanism.

Square Planar Complexes:

- Associative substitution occurs with retention of configuration.
- The *trans*-effect [made up of the trans influence (a thermodynamic effect) and π -acceptor ability (a kinetic effect)] can be used to work out which isomer will be formed in associative substitution reactions of square planar compounds.
- $e.g.$ $[$ PtCl(NH₃)₃]⁺ + Cl[–] → *trans*-[PtCl₂(NH₃)₂]; while $[$ PtCl₃(NH₃)][–] + NH₃ → *cis*-[PtCl₂(NH₃)₂].

Exceptions: Associative Substitution for 18 electron complexes (negative ΔS^{\ddagger})

Certain complexes with π -ligands (*e.g.* cyclopentadienyl, indenyl, fluorenyl):

$$
\begin{array}{ccc}\n & k_1 \text{ (slow)} & k_2 \text{ (fast)} \\
\hline\n & + PR_3 & \n\end{array}\n\quad\n\begin{array}{ccc}\n & k_2 \text{ (fast)} & \n\end{array}\n\quad\n\begin{array}{ccc}\n & k_2 \text{ (fast)} & \n\end{array}\n\quad\n\begin{array}{ccc}\n & k_1 \text{ (slow)} & k_2 \text{ (fast)} & \n\end{array}\n\quad\n\begin{array}{ccc}\n & k_2 \text{ (fast)} & \n\end{array}\n\quad\n\begin{array}{ccc}\n & k_1 \text{ (slow)} & k_2 \text{ (fast)} & \n\end{array}\n\quad\n\begin{array}{ccc}\n & k_2 \text{ (fast)} & \n\end{array}\n\quad\n\begin{array}{ccc}\n & k_1 \text{ (slow)} & k_2 \text{ (fast)} & \n\end{array}\n\quad\n\begin{array}{ccc}\n & k_2 \text{ (fast)} & \n\end{array}\n\quad\n\begin{array}{ccc}\n & k_1 \text{ (slow)} & k_2 \text{ (fast)} & \n\end{array}\n\quad\n\begin{array}{ccc}\n & k_2 \text{ (fast)} & \n\end{array}\n\quad\n\begin{array}{ccc}\n & k_1 \text{ (slow)} & k_2 \text{ (fast)} & \n\end{array}\n\quad\n\begin{array}{ccc}\n & k_1 \text{ (slow)} & k_2 \text{ (fast)} & \n\end{array}\n\quad\n\begin{array}{ccc}\n & k_1 \text{ (slow)} & k_2 \text{ (fast)} & \n\end{array}\n\quad\n\begin{array}{ccc}\n & k_1 \text{ (slow)} & k_2 \text{ (fast)} & \n\end{array}\n\quad\n\begin{array}{ccc}\n & k_1 \text{ (slow)} & k_2 \text{ (fast)} & \n\end{array}\n\quad\n\begin{array}{ccc}\n & k_1 \text{ (slow)} & k_2 \text{ (fast)} & \n\end{array}\n\quad\n\begin{array}{ccc}\n & k_1 \text{ (slow)} & k_2 \text{ (fast)} & \n\end{array}\n\quad\n\end{array}
$$

■ Certain complexes with redox active ligands (e.g. NO⁺/NO⁻, 2 or 4 electron donor alkynes):

$$
\begin{array}{ccc}\n[(CO)_3Co(NO)] & k_1 \text{ (slow)} \\
\hline\n&+ PR_3 & [(CO)_3Co(PR_3)(NO)] & k_2 \text{ (fast)} \\
\hline\n&+ PR_3 & \text{ (C0)}_2Co(PR_3)(NO)] & -CO \\
\end{array}
$$
\nLinear NO⁺

\nlinear NO⁺

\n18 e⁻

\n18 e⁻

Substitution for 17 electron complexes = associative

$$
V(CO)6 + PR3 \longrightarrow V(CO)6(PR3) \longrightarrow V(CO)5(PR3) + CO
$$

\n7 coordinate
\n17 e⁻
\n19 e⁻
\n17 e⁻
\n17 e⁻
\nRate of substitution: $PMe3 > PnBu3 > P(OMe)3 > PPh3$ $\Big\}$ Balance of *steric
\nand electronic effects*

By contrast, 18 electron $[V(CO)_6]$ ⁻ fails to react even with molten PPh₃.

Interchange (I)

- Intermediate between dissociative and associative mechanisms
- I_d = closer to dissociative mechanism
- **I_a** = closer to associative mechanism

- **Dissociative interchange (I_d)** \rightarrow **Unlike dissociative mechanism,** ΔS^{\ddagger} **is negative and rate** always depends on [L].
- Associative interchange $(I_a) \rightarrow V$ ery difficult to distinguish from the associative mechanism.

Cis Effect (for dissociative substitution in octahedral complexes):

 $MeCO_2^-$ > RC(O)⁻ > SH⁻ > Cl⁻ > Br⁻ > l⁻ > Carbene > PPh₃ > H⁻, CO

Trans Effect (for associative substitution in square planar complexes – a kinetic phenomenon):

CO, CN⁻, C₂H₄ > PR₃, H⁻ > Me⁻ > Ph⁻ > NO₂⁻ > SCN⁻ > I⁻ > Br⁻ > Cl⁻ > Py, NH₃, OH⁻, H₂O

Trans Influence (responsible for the ground state contribution to the trans effect):

H > PR_3 > SCN · > I > Me · > CO > CN · > Br · > Cl · > NH₃ > OH

Strong σ -donors weaken the metal-ligand bond trans to themselves.

 π -**Acceptor Ability** (responsible for the transition state contribution to the trans effect):

 C_2F_4 , NO⁺ > C_2H_4 , CO > CN⁻ > NO₂⁻ > SCN⁻ > I⁻ > Br⁻ > Cl⁻ > NH₃ > OH⁻

Strong π -acceptors greatly prefer an equatorial position in the trigonal bipyramidal transition state formed during associative substitution with square planar complexes (*i.e.* the transition state is lower in energy if the strongest π -acceptor is in an equatorial position \rightarrow a kinetic effect). See below:

