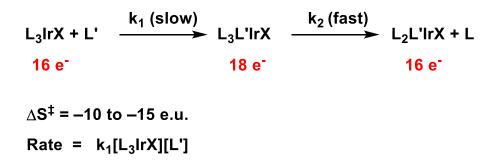
Dissociative (D)


- Generally observed for 18 electron complexes with strong field ligands
- $e.g. \operatorname{Cr}(\operatorname{CO})_6$, $\operatorname{MnBr}(\operatorname{CO})_5$, $\operatorname{Ni}(\operatorname{CO})_4$

 $k_{1} (slow) \qquad k_{2} (fast)$ $(CO)_{5}Cr-CO \xrightarrow{-CO} (CO)_{5}Cr \xrightarrow{+L} (CO)_{5}Cr-L$ $18 e^{-} \qquad k_{.1} \qquad 16 e^{-} \qquad 18 e^{-}$ $\Delta S^{\dagger} = +10 \text{ to } +15 \text{ e.u.}$ If $k_{.1} \text{ is not important: Rate} = k_{1}[(CO)_{5}Cr-CO] = \text{ does not depend on [L]}$ If $k_{.1} \text{ is important: Rate} = k_{1}k_{2}[(CO)_{5}Cr-CO][L]$ $k_{.1}[CO] + k_{2}[L]$

- If ΔS^{\dagger} is significantly positive, the mechanism is almost certainly dissociative.
- If the rate does not depend on [L], the mechanism is almost certainly dissociative.
- The *cis*-effect can be used to work out which isomer will be formed in dissociative substitution reactions of octahedral compounds [*e.g.* MnBr(CO)₅].

Associative (A)

- Generally observed for 16 and 17 electron complexes
- *e.g.* square planar complexes as well as other geometries

- If ΔS^{\dagger} is significantly negative, the mechanism is almost certainly associative.
- If the mechanism is associative, the rate of reaction will depend on [L]. However, a dependence of the reaction rate on [L] does not necessarily indicate an associative mechanism.

Square Planar Complexes:

- Associative substitution occurs with retention of configuration.
- The *trans*-effect [made up of the trans influence (a thermodynamic effect) and π-acceptor ability (a kinetic effect)] can be used to work out which isomer will be formed in associative substitution reactions of square planar compounds.
- $e.g. [PtCl(NH_3)_3]^+ + Cl^- \rightarrow trans [PtCl_2(NH_3)_2]; while [PtCl_3(NH_3)]^- + NH_3 \rightarrow cis [PtCl_2(NH_3)_2].$

Exceptions: Associative Substitution for 18 electron complexes (negative ΔS^{\dagger})

Certain complexes with π-ligands (*e.g.* cyclopentadienyl, indenyl, fluorenyl):

$$[(\eta^{5}-Cp)Rh(CO)_{2}] \xrightarrow{k_{1} (slow)} [(\eta^{3}-Cp)Rh(CO)_{2}(PR_{3})] \xrightarrow{k_{2} (fast)} [(\eta^{5}-Cp)Rh(CO)(PR_{3})]$$

$$18 e^{-} \qquad 18 e^{-} \qquad 18 e^{-}$$

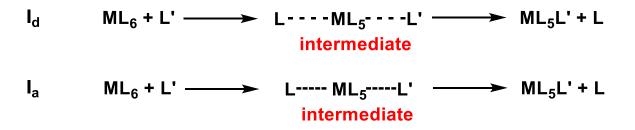
Certain complexes with redox active ligands (*e.g.* NO⁺/NO⁻, 2 or 4 electron donor alkynes):

$$[(CO)_{3}Co(NO)] \xrightarrow{k_{1} (slow)} [(CO)_{3}Co(PR_{3})(NO)] \xrightarrow{k_{2} (fast)} [(CO)_{2}Co(PR_{3})(NO)]$$

$$\xrightarrow{linear NO^{+}} \underbrace{bent NO^{-}}_{18 e^{-}} \underbrace{linear NO^{+}}_{18 e^{-}}$$

Substitution for 17 electron complexes = associative

$$V(CO)_{6} + PR_{3} \longrightarrow V(CO)_{6}(PR_{3}) \longrightarrow V(CO)_{5}(PR_{3}) + CO$$


$$7 \text{ coordinate}$$

$$17 e^{-} \qquad 19 e^{-} \qquad 17 e^{-}$$
intermediate
$$Rate \text{ of substitution: } PMe_{3} > P^{n}Bu_{3} > P(OMe)_{3} > PPh_{3} \begin{cases} Balance \text{ of steric} \\ and electronic \\ effects \end{cases}$$

• By contrast, 18 electron $[V(CO)_6]^-$ fails to react even with molten PPh₃.

Interchange (I)

- Intermediate between dissociative and associative mechanisms
- I_d = closer to dissociative mechanism
- I_a = closer to associative mechanism

- Dissociative interchange (I_d) → Unlike dissociative mechanism, ∆S[‡] is negative and rate always depends on [L].
- Associative interchange $(I_a) \rightarrow$ Very difficult to distinguish from the associative mechanism.

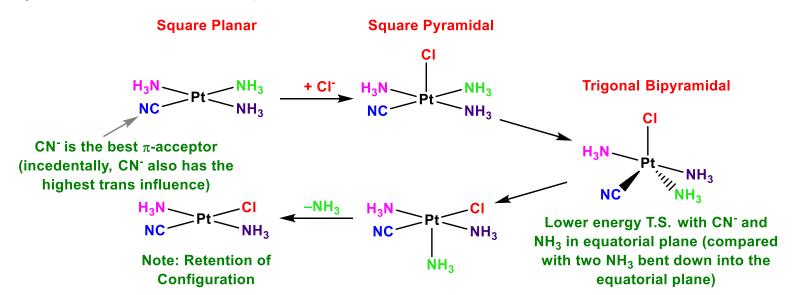
Cis Effect (for dissociative substitution in octahedral complexes):

 $MeCO_2^- > RC(O)^- > SH^- > Cl^- > Br^- > l^- > Carbene > PPh_3 > H^-, CO$

Trans Effect (for associative substitution in square planar complexes – a kinetic phenomenon):

CO, CN^- , $C_2H_4 > PR_3$, $H^- > Me^- > Ph^- > NO_2^- > SCN^- > I^- > Br^- > CI^- > Py$, NH_3 , OH^- , H_2O

Trans Influence (responsible for the ground state contribution to the trans effect):


 $H^- > PR_3 > SCN^- > I^- > Me^- > CO > CN^- > Br^- > CI^- > NH_3 > OH^-$

Strong σ-donors weaken the metal-ligand bond trans to themselves.

 π -Acceptor Ability (responsible for the transition state contribution to the trans effect):

 $C_{2}F_{4}$, $NO^{+} > C_{2}H_{4}$, $CO > CN^{-} > NO_{2}^{-} > SCN^{-} > I^{-} > Br^{-} > CI^{-} > NH_{3} > OH^{-}$

Strong π-acceptors greatly prefer an equatorial position in the trigonal bipyramidal transition state formed during associative substitution with square planar complexes (*i.e.* the transition state is lower in energy if the strongest π-acceptor is in an equatorial position → a kinetic effect). See below:

